Last updated: 2022-09-09

Checks: 7 0

Knit directory: rare-mutation-detection/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210916) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 62e155d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rapp.history
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    scripts/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  DOCNAME
    Untracked:  analysis/._.DS_Store
    Untracked:  analysis/cache/
    Untracked:  analysis/calc_nanoseq_metrics.Rmd
    Untracked:  data/._metrics.rds
    Untracked:  data/ecoli/
    Untracked:  data/ecoli_k12_metrics.rds
    Untracked:  data/metadata/
    Untracked:  data/metrics_efficiency_nossc.rds
    Untracked:  data/mixtures
    Untracked:  data/ref/
    Untracked:  prototype_code/

Unstaged changes:
    Modified:   analysis/ecoli_K12.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/downsampling.Rmd) and HTML (docs/downsampling.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 62e155d Marek Cmero 2022-09-09 Added NanoSeq MB2 Rep1 downsampling experiment
html 2a208e6 Marek Cmero 2022-08-24 Build site.
Rmd e66471e Marek Cmero 2022-08-24 Added replicate to downsampling experiment; separated gc_both and gc_single stats
html 4ae6aec Marek Cmero 2022-08-19 Build site.
Rmd a06f97c Marek Cmero 2022-08-19 Added extra 1-6% samples
html f90d40a Marek Cmero 2022-08-18 Build site.
Rmd 7ff227e Marek Cmero 2022-08-18 Added downsampling experiments and some presentation-only plots.

Downsampling experiments

The E. Coli sample 1-K12Rep1 (1% spike-in) was selected as a representative sample. We down-sampled to 1-6% in 1% increments and 10-50% in 10% increments to determine the optimal duplicate rate (highest efficiency).

library(ggplot2)
library(data.table)
library(dplyr)
library(here)
library(tibble)
library(stringr)
library(Rsamtools)
library(GenomicRanges)
library(seqinr)
library(parallel)
library(readxl)
library(patchwork)
library(RColorBrewer)
library(UpSetR)
library(vcfR)
library(tidyr)
source(here('code/load_data.R'))
source(here('code/plot.R'))
source(here('code/efficiency_nanoseq_functions.R'))
genome_max <- 4528118
cores <- 8
genomeFile <- here('data/ref/Escherichia_coli_strain_BL21_TaKaRa.fasta')
rinfo_dir <- here('data/ecoli/downsampling/QC/read_info')
markdup_dir <- here('data/ecoli/downsampling/QC/mark_duplicates')
qualimap_dir <- here('data/ecoli/downsampling/QC/qualimap')
qualimap_cons_dir <- here('data/ecoli/downsampling/QC/consensus/qualimap')
variant_dir <- here('data/ecoli/downsampling/variants')
sample_names <- list.files(rinfo_dir, pattern = '\\.txt\\.gz') %>%
                str_split('\\.txt\\.gz') %>%
                lapply(., dplyr::first) %>%
                unlist() %>%
                str_split('_') %>%
                lapply(., head, 2) %>%
                lapply(., paste, collapse='-') %>%
                unlist()

# load variant data
var_sample_names <- list.files(variant_dir) %>%
                str_split('_HFVGHDSX3') %>%
                lapply(., dplyr::first) %>%
                unlist()

var_df <- load_variants(variant_dir, var_sample_names) %>% calculate_vafs()

# load and fetch duplicate rate from MarkDuplicates output
mdup <- load_markdup_data(markdup_dir, sample_names)

# get mean coverage for pre and post-consensus reads
qmap_cov <- get_qmap_coverage(qualimap_dir, sample_names)
qmap_cons_cov <- get_qmap_coverage(qualimap_cons_dir, sample_names)

# uncomment below to calculate metrics
# calculate metrics for nanoseq
rlen <- 151; skips <- 5
metrics <- calc_metrics_new_rbs(rinfo_dir, cores = cores) %>% bind_rows()

metrics$duplicate_rate <- mdup
metrics$duplex_coverage_ratio <- qmap_cov$coverage / qmap_cons_cov$coverage
metrics$duplex_coverage_ratio[qmap_cons_cov$coverage < 1] <- 0 # fix when < 1 duplex cov
metrics$sample <- gsub('-HFVGHDSX3', '', sample_names)

# cache metrics object
# saveRDS(metrics, file = here('data/metrics.rds'))

# prepare for plotting
mm <- data.frame(reshape2::melt(metrics))
colnames(mm)[2] <- 'metric'

mm$group <- gsub('-0\\.[0-9]+-mix', '', mm$sample)

Metric comparison plots

Overview

ggplot(mm, aes(sample, value, shape = group)) + 
    geom_point() +
    theme_bw() +
    theme(axis.text.x = element_text(angle = 90)) +
    facet_wrap(~metric, scales = 'free') +
    scale_colour_brewer(palette = 'Dark2')

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

Duplicate rate

Fraction of duplicate reads calculated by Picard’s MarkDuplicates. This is based on barcode-aware aligned duplicates mapping to the same 5’ positions for both read pairs. The NanoSeq Analysis pipeline states the optimal empirical duplicate rate is 75-76% (marked in the plot).

metric <- 'duplicate_rate'
ggplot(mm[mm$metric == metric,], aes(sample, value, fill = group)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        geom_hline(yintercept = 0.81, alpha = 0.4)  +
        scale_fill_brewer(palette = 'Set2') +
        ggtitle(metric)

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

Fraction of singleton reads

Shows the number of single-read families divided by the total number of reads. As suggested by Stoler et al. 2016, this metric can server as a proxy for error rate, as (uncorrected) barcode mismatches will manifest as single-read families. The lower the fraction of singletons, the better.

metric <- 'frac_singletons'
ggplot(mm[mm$metric == metric,], aes(sample, value, fill = group)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
         scale_fill_brewer(palette = 'Set2') +
        ggtitle(metric)

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

Drop-out rate

This is the same calculation as F-EFF in the NanoSeq Analysis pipeline:

“This shows the fraction of read bundles missing one of the two original strands beyond what would be expected under random sampling (assuming a binomial process). Good values are between 0.10-0.30, and larger values are likely due to DNA damage such as modified bases or internal nicks that prevent amplification of one of the two strands. Larger values do not impact the quality of the results, just reduce the efficiency of the protocol.”

This is similar to the singleton fraction, but taking into account loss of pairs due to sampling. The optimal range is shown by the lines.

metric <- 'drop_out_rate'
ggplot(mm[mm$metric == metric,], aes(sample, value, fill = group)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        scale_fill_brewer(palette = 'Set2') +
        geom_hline(yintercept = c(0.1, 0.3), alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

Efficiency

Efficiency is the number of duplex bases divided by the number of sequenced bases. According the NanoSeq Analysis pipeline, this value is maximised at ~0.07 when duplicate rates and strand drop-outs are optimal.

metric <- 'efficiency'
ggplot(mm[mm$metric == metric,], aes(sample, value, fill = group)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        scale_fill_brewer(palette = 'Set2') +
        geom_hline(yintercept = c(0.07), alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

GC deviation

GC deviation is the absolute difference between GC_BOTH and GC_SINGLE calculated by the NanoSeq Analysis pipeline. The lower this deviation, the better.

“GC_BOTH and GC_SINGLE: the GC content of RBs with both strands and with just one strand. The two values should be similar between them and similar to the genome average. If there are large deviations that is possibly due to biases during PCR amplification. If GC_BOTH is substantially larger than GC_SINGLE, DNA denaturation before dilution may have taken place.”

metric <- 'gc_deviation'
ggplot(mm[mm$metric == metric,], aes(sample, value, fill = group)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        scale_fill_brewer(palette = 'Set2') +
        ggtitle(metric)

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

Duplex Coverage ratio

The mean sequence (pre-duplex) coverage divided by mean duplex coverage. Indicates the yield of how much duplex coverage we get at each sample’s sequence coverage. Abascal et al. report that their yield was approximately 30x (marked on the plot).

metric <- 'duplex_coverage_ratio'
ggplot(mm[mm$metric == metric,], aes(sample, value, fill = group)) +
        geom_histogram(stat = 'identity', position = 'dodge') +
        theme_bw() +
        coord_flip() +
        scale_fill_brewer(palette = 'Set2') +
        geom_hline(yintercept = 30, alpha = 0.4)  +
        ggtitle(metric)

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

Family statistics

Comparison of family pair sizes between samples (these are calculated from total reads of paired AB and BA families).

ggplot(mm[mm$metric %like% 'family', ], aes(value, sample, colour = metric)) +
        geom_point() +
        coord_trans(x='log2') +
        scale_x_continuous(breaks=seq(0, 94, 8)) +
        theme(axis.text.x = element_text(size=5)) +
        theme_bw() +
        ggtitle('Family pair sizes')

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

The following plot shows:

  • families_gt1: number of family pairs where at least one family (AB or BA) has > 1 reads.
  • paired_families: number of family pairs where both families (AB and BA) have > 0 reads.
  • paired_and_gt1: number of family pairs where both families (AB and BA) have > 1 reads.
ggplot(mm[mm$metric %like% 'pair|gt1', ], aes(value, sample, fill = metric)) +
        geom_bar(stat='identity', position='dodge') +
        theme_bw() +
        ggtitle('Family statistics')

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
f90d40a Marek Cmero 2022-08-18

Efficiency vs. duplicate rate

dvf <- mm[mm$metric %in% c('duplicate_rate', 'efficiency'),] %>%
        reshape2::dcast(., sample ~ metric) %>%
        mutate(group = gsub('-0\\.[0-9]+-mix', '', sample),
               sample = gsub('p[0-9]|-|mix', '', sample))

ggplot(dvf, aes(duplicate_rate, efficiency, label = sample, colour = group)) +
    geom_text(vjust = -0.5) +
    geom_point() +
    theme_bw() +
    geom_smooth(method = 'lm', formula = y ~ x + I(x^2), alpha = 0.2) +
    scale_x_continuous(breaks = seq(0.3, 0.9, 0.1))

Version Author Date
2a208e6 Marek Cmero 2022-08-24
4ae6aec Marek Cmero 2022-08-19
print(dvf)
   sample  efficiency duplicate_rate group
1    0.01 0.009357879       0.344995    p1
2    0.02 0.023186215       0.530327    p1
3    0.03 0.028731789       0.639217    p1
4    0.04 0.029026991       0.708232    p1
5    0.05 0.027242919       0.755368    p1
6    0.06 0.024912201       0.788894    p1
7     0.1 0.017276748       0.861301    p1
8     0.2 0.009495706       0.920186    p1
9     0.3 0.006573071       0.940894    p1
10    0.4 0.005042973       0.951593    p1
11    0.5 0.004093100       0.958179    p1
12   0.01 0.017112062       0.456862    p2
13   0.02 0.027572392       0.644464    p2
14   0.03 0.026600260       0.737295    p2
15   0.04 0.023353433       0.791547    p2
16   0.05 0.020244512       0.826472    p2
17   0.06 0.017763446       0.850733    p2
18    0.1 0.011633367       0.901799    p2
19    0.2 0.006205110       0.942477    p2
20    0.3 0.004245127       0.956784    p2
21    0.4 0.003238568       0.964124    p2
22    0.5 0.002620392       0.968663    p2
23    0.1 0.007324807       0.223345    p3
24    0.2 0.025883250       0.372871    p3
25    0.3 0.042500643       0.477532    p3
26    0.4 0.052752617       0.553370    p3
27    0.5 0.057747730       0.610244    p3
28    0.6 0.059300720       0.654287    p3
29    0.7 0.058824472       0.689125    p3
30    0.8 0.057309689       0.717307    p3
31    0.9 0.055289137       0.740505    p3

sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /stornext/System/data/apps/R/R-4.0.5/lib64/R/lib/libRblas.so
LAPACK: /stornext/System/data/apps/R/R-4.0.5/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] tidyr_1.1.3          vcfR_1.12.0          UpSetR_1.4.0        
 [4] RColorBrewer_1.1-3   patchwork_1.1.1      readxl_1.3.1        
 [7] seqinr_4.2-8         Rsamtools_2.6.0      Biostrings_2.58.0   
[10] XVector_0.30.0       GenomicRanges_1.42.0 GenomeInfoDb_1.26.7 
[13] IRanges_2.24.1       S4Vectors_0.28.1     BiocGenerics_0.36.1 
[16] stringr_1.4.0        tibble_3.1.7         here_1.0.1          
[19] dplyr_1.0.7          data.table_1.14.0    ggplot2_3.3.6       
[22] workflowr_1.6.2     

loaded via a namespace (and not attached):
 [1] nlme_3.1-152           bitops_1.0-7           fs_1.5.0              
 [4] rprojroot_2.0.2        tools_4.0.5            bslib_0.3.0           
 [7] utf8_1.2.2             R6_2.5.1               vegan_2.5-7           
[10] DBI_1.1.1              mgcv_1.8-35            colorspace_2.0-3      
[13] permute_0.9-5          ade4_1.7-18            withr_2.5.0           
[16] tidyselect_1.1.1       gridExtra_2.3          compiler_4.0.5        
[19] git2r_0.28.0           cli_3.3.0              labeling_0.4.2        
[22] sass_0.4.0             scales_1.2.0           digest_0.6.29         
[25] rmarkdown_2.11         pkgconfig_2.0.3        htmltools_0.5.2       
[28] highr_0.9              fastmap_1.1.0          rlang_1.0.2           
[31] rstudioapi_0.13        farver_2.1.0           jquerylib_0.1.4       
[34] generics_0.1.1         jsonlite_1.7.2         BiocParallel_1.24.1   
[37] RCurl_1.98-1.3         magrittr_2.0.3         GenomeInfoDbData_1.2.4
[40] Matrix_1.3-2           Rcpp_1.0.7             munsell_0.5.0         
[43] fansi_1.0.3            ape_5.5                lifecycle_1.0.1       
[46] stringi_1.7.5          whisker_0.4            yaml_2.2.1            
[49] MASS_7.3-53.1          zlibbioc_1.36.0        plyr_1.8.6            
[52] pinfsc50_1.2.0         grid_4.0.5             promises_1.2.0.1      
[55] crayon_1.5.1           lattice_0.20-44        splines_4.0.5         
[58] knitr_1.33             pillar_1.7.0           reshape2_1.4.4        
[61] glue_1.6.2             evaluate_0.14          memuse_4.2-1          
[64] vctrs_0.4.1            httpuv_1.6.3           cellranger_1.1.0      
[67] gtable_0.3.0           purrr_0.3.4            assertthat_0.2.1      
[70] xfun_0.22              later_1.3.0            viridisLite_0.4.0     
[73] cluster_2.1.2          ellipsis_0.3.2